
Project: Sustainix Renewable
Website: sustainix.org
Platform: Ethereum
Language: Solidity
Date: August 5th, 2024

http://sustainix.org

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Sustainix Renewable Provider Limited to perform the
Security audit of the Sustainix Renewable smart contract code. The audit was performed
using manual analysis and automated software tools. This report presents all the findings
regarding the audit performed on August 5th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Solidity smart contract for a token called "Sustainix Renewable" (SXR). This contract

extends the ERC20 standard with additional features such as burnable tokens, fee

mechanisms, swap thresholds, and automated market maker (AMM) management.

Here's a brief overview of the contract features and structure:

● ERC20 Standard and Burnable Tokens: Inherits from `ERC20` and

`ERC20Burnable`.

● Ownership:
○ Uses `Ownable2Step` to manage ownership.

○ The `Initializable` ensures that certain functions run only once after

deployment.

● Fees and Liquidity:
○ Supports three types of fees: buy, sell, and transfer.

○ Fees can be allocated for research and liquidity.

○ Uses UniswapV2 for liquidity operations.

● Exclusions: Addresses can be excluded from fees and trade limits.

● Trading Limits:
○ Enforces maximum buy and sell amounts.

○ Implements trade cooldown periods to prevent rapid trades.

● Swap and Liquify:
○ Automatically swaps tokens for ETH and adds liquidity.

○ Supports adding liquidity from leftover tokens.

● Error Handling: Custom error messages for various validation checks.

This contract is designed to handle various aspects of an ERC20 token, including fees,

liquidity management, and trading restrictions, making it suitable for a decentralized

finance (DeFi) application.

Audit scope

Name Code Review and Security Analysis Report for
Sustainix Renewable Smart Contract

Platform Ethereum / Solidity

File Sustainix_Renewable.sol

Etherscan Smart Contract
Address 0x135acfcc634f8b28c37518bc4070d484d2a7d524

Audit Date August 5th, 2024

https://etherscan.io/address/0x135acfcc634f8b28c37518bc4070d484d2a7d524#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Sustainix Renewable

● Symbol: SXR

● Decimals: 18

● Maximum buy amount: 50 million

● Maximum sell amount: 30 million

● Swap Threshold Ratio: 50

YES, This is valid.

Liquidity Fees:
● Buy Fee:0.5%

● Sell Fee:0.5%

Research Fees:
● Buy Fee:1%

● Sell Fee:1%

YES, This is valid.

The owner has control over the following
functions:

● Allows the owner to recover tokens.

● Allows the owner to recover foreign tokens.

● Updates the swap threshold ratio.

● Set up the research address.

● Set up research fees.

● Set up liquidity fees.

● Excludes an address from fees.

● Sets an address as an AMM.

● Excludes an address from limits.

● Updates the maximum buy/sell amount.

● Updates the trade cooldown time.

● The current owner can transfer the

ownership.

● The owner can renounce ownership.

YES, This is valid.
We suggest renouncing
ownership once the ownership
functions are not needed. This is
to make the smart contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, Customer`s solidity-based smart contracts
are “secured”. This token contract contains owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 1.5%

Sell Tax 1.5%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Yes

Fee Check Yes

Is Honeypot Not Detected

Trading Cooldown 30 mins

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? 2.5%

Is it Anti-whale? Not Detected

Is Anti-bot? Yes

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? No

Can Take Ownership? Yes

Creator Percentage? 0.00%

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the Sustainix Renewable are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties/methods can be

reused many times by other contracts in the Sustainix Renewable.

The Sustainix Renewable team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Sustainix Renewable smart contract code in the form of an etherscan

weblink.

As mentioned above, the code parts are well commented on. And the logic is

straightforward. So, it is easy to understand the programming flow and complex code logic

quickly. Comments are very helpful in understanding the overall architecture of the

protocol.

Another source of information was its website sustainix.org which provided rich information

about the project architecture.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/address/0x135acfcc634f8b28c37518bc4070d484d2a7d524#code
http://sustainix.org

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Hardcoded

address
Refer Audit
Findings

2 afterConstructor external initializer No Issue
3 decimals write Passed No Issue
4 recoverToken external The owner can

drain tokens
Refer Audit
Findings

5 recoverForeignERC20 external access only
Owner

No Issue

6 receive external Passed No Issue
7 _swapTokensForCoin write Passed No Issue
8 updateSwapThreshold write access only

Owner
No Issue

9 getSwapThresholdAmount read Passed No Issue
10 getAllPending read Passed No Issue
11 researchAddressSetup write access only

Owner
No Issue

12 researchFeesSetup write access only
Owner

No Issue

13 _swapAndLiquify write Liquidity
transferred to
dead address

Refer Audit
Findings

14 _addLiquidity write Liquidity
transferred to
dead address

Refer Audit
Findings

15 addLiquidityFromLeftoverTok
ens

external Passed No Issue

16 liquidityFeesSetup write access only
Owner

No Issue

17 excludeFromFees write access only
Owner

No Issue

18 _updateRouterV2 write Passed No Issue
19 setAMM external access only

Owner
No Issue

20 _setAMM write Passed No Issue
21 excludeFromLimits external access only

Owner
No Issue

22 _excludeFromLimits internal Passed No Issue
23 _maxTxSafeLimit read Passed No Issue
24 updateMaxBuyAmount write access only

Owner
No Issue

25 updateMaxSellAmount write access only
Owner

No Issue

26 updateTradeCooldownTime write access only
Owner

No Issue

27 _update internal Passed No Issue
28 _beforeTokenUpdate internal Passed No Issue
29 _afterTokenUpdate internal Passed No Issue
30 name read Passed No Issue
31 symbol read Passed No Issue
32 decimals read Passed No Issue
33 totalSupply read Passed No Issue
34 balanceOf read Passed No Issue
35 transfer write Passed No Issue
36 allowance read Passed No Issue
37 approve write Passed No Issue
38 transferFrom write Passed No Issue
39 _transfer internal Passed No Issue
40 _update internal Passed No Issue
41 _mint internal Passed No Issue
42 _burn internal Passed No Issue
43 _approve internal Passed No Issue
44 _approve internal Passed No Issue
45 _spendAllowance internal Passed No Issue
46 burn write Passed No Issue
47 burnFrom write Passed No Issue
48 pendingOwner read Passed No Issue
49 transferOwnership write access only

Owner
No Issue

50 _transferOwnership internal Passed No Issue
51 acceptOwnership write Passed No Issue
52 initializer modifier Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Liquidity transferred to dead address:

While swap and liquify, liquidity has been added to address(0).

Resolution: We suggest confirming this if this is a required feature.

(2) Hardcoded address:

A hardcoded address is used to set. The same address is used for _transferOwnership

and supplyRecipient

Resolution: We suggest confirming the address before deployment and also the same

variable can be used to transfer ownership.

(3) The owner can drain tokens:

The owner can drain the SXR token from the contract.

Resolution: We suggest keeping the owner's private key safe to not allow anyone to

misuse the tokens.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would usually create

trouble. The following are Admin functions:

Sustainix_Renewable.sol
● recoverToken: Allows the owner to recover tokens.

● recoverForeignERC20: Allows the owner to recover foreign tokens.

● updateSwapThreshold: The owner can update the swap threshold ratio.

● researchAddressSetup: The owner can set up a research address.

● researchFeesSetup: The owner can set up a research fee.

● liquidityFeesSetup: The owner can set up liquidity fees.

● excludeFromFees: The owner can exclude an address from fees.

● setAMM: The owner can set an address as an AMM.

● excludeFromLimits: The owner can exclude an address from the limit.

● updateMaxBuyAmount: The owner can update the maximum buy amount.

● updateMaxSellAmount: The owner can update the maximum sell amount.

● updateTradeCooldownTime: The owner can update the trade cooldown time.

Ownable2Step.sol
● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

Ownable.sol
● renounceOwnership Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of an etherscan weblink, and we used all

possible tests based on the given objects. We have observed 3 Informational severity

issues. but these issues are not critical. So, the smart contract is ready for mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/address/0x135acfcc634f8b28c37518bc4070d484d2a7d524#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Sustainix Renewable

Slither Results Log
Slither Log >> Sustainix_Renewable.sol

INFO:Detectors:
Sustainix_Renewable.researchAddressSetup(address)._newAddress
(Sustainix_Renewable.sol#1160) lacks a zero-check on :

- researchAddress = _newAddress (Sustainix_Renewable.sol#1163)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in Sustainix_Renewable._swapAndLiquify(uint256)
(Sustainix_Renewable.sol#1181-1199):

External calls:
- _swapTokensForCoin(halfAmount) (Sustainix_Renewable.sol#1186)

-
routerV2.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,addres
s(this),block.timestamp) (Sustainix_Renewable.sol#1141)

- (amountToken,amountCoin,liquidity) = _addLiquidity(otherHalf,coinBalance)
(Sustainix_Renewable.sol#1191)

- routerV2.addLiquidityETH{value:
coinAmount}(address(this),tokenAmount,0,0,address(0),block.timestamp)
(Sustainix_Renewable.sol#1204)

External calls sending eth:
- (amountToken,amountCoin,liquidity) = _addLiquidity(otherHalf,coinBalance)

(Sustainix_Renewable.sol#1191)
- routerV2.addLiquidityETH{value:

coinAmount}(address(this),tokenAmount,0,0,address(0),block.timestamp)
(Sustainix_Renewable.sol#1204)

State variables written after the call(s):
- (amountToken,amountCoin,liquidity) = _addLiquidity(otherHalf,coinBalance)

(Sustainix_Renewable.sol#1191)
- _allowances[owner][spender] = value (Sustainix_Renewable.sol#965)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Sustainix_Renewable._update(address,address,uint256) (Sustainix_Renewable.sol#1298-1373)
has a high cyclomatic complexity (16).
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#cyclomatic-complexity
INFO:Detectors:
Pragma version^0.8.20 (Sustainix_Renewable.sol#4) necessitates a version too recent to be
trusted. Consider deploying with 0.8.18.
solc-0.8.20 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:

Parameter Sustainix_Renewable.liquidityFeesSetup(uint16,uint16,uint16)._sellFee
(Sustainix_Renewable.sol#1215) is not in mixedCase
Parameter Sustainix_Renewable.liquidityFeesSetup(uint16,uint16,uint16)._transferFee
(Sustainix_Renewable.sol#1215) is not in mixedCase
Parameter Sustainix_Renewable.setAMM(address,bool).AMM (Sustainix_Renewable.sol#1242)
is not in mixedCase
Parameter Sustainix_Renewable.updateMaxBuyAmount(uint256)._maxBuyAmount
(Sustainix_Renewable.sol#1273) is not in mixedCase
Parameter Sustainix_Renewable.updateMaxSellAmount(uint256)._maxSellAmount
(Sustainix_Renewable.sol#1281) is not in mixedCase
Parameter Sustainix_Renewable.updateTradeCooldownTime(uint256)._tradeCooldownTime
(Sustainix_Renewable.sol#1289) is not in mixedCase
Variable Sustainix_Renewable.AMMs (Sustainix_Renewable.sol#1042) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
Sustainix_Renewable.constructor() (Sustainix_Renewable.sol#1076-1103) uses literals with too
many digits:

- updateMaxBuyAmount(500000000 * (10 ** decimals()) / 10)
(Sustainix_Renewable.sol#1096)
Sustainix_Renewable.constructor() (Sustainix_Renewable.sol#1076-1103) uses literals with too
many digits:

- updateMaxSellAmount(300000000 * (10 ** decimals()) / 10)
(Sustainix_Renewable.sol#1097)
Sustainix_Renewable.constructor() (Sustainix_Renewable.sol#1076-1103) uses literals with too
many digits:

- _mint(supplyRecipient,100000000000 * (10 ** decimals()) / 10)
(Sustainix_Renewable.sol#1101)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Slither:Sustainix_Renewable.sol analyzed (18 contracts with 93 detectors), 63 result(s)
found

Solidity Static Analysis
Sustainix_Renewable.sol

Inline assembly:
The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 222:12:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 1568:75:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 1523:43:

Gas costs:
Gas requirement of function Sustainix_Renewable.renounceOwnership is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)
Pos: 763:10:

Gas costs:
Gas requirement of function Sustainix_Renewable.updateSwapThreshold is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)
Pos: 1317:10:

ERC20:
ERC20 contract's "decimals" function should have "uint8" as return type
Pos: 409:4:

Similar variable names:
Sustainix_Renewable.setAMM(address,bool) : Variables have very similar names "AMM" and
"isAMM". Note: Modifiers are currently not considered by this static analysis.
Pos: 1416:35:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in

your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 805:14:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 1269:33:

Solhint Linter

Sustainix_Renewable.sol

Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:3
Avoid to use low level calls.
Pos: 51:175
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 13:221
Function name must be in mixedCase
Pos: 5:474
Avoid to use low level calls.
Pos: 51:539
Error message for require is too long
Pos: 9:804
Contract has 17 states declarations but allowed no more than 15
Pos: 1:1175
Contract name must be in CamelCase
Pos: 1:1175
Variable name must be in mixedCase
Pos: 22:1239
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1248
Visibility modifier must be first in list of modifiers
Pos: 60:1280
Avoid making time-based decisions in your business logic
Pos: 106:1376
Variable name must be in mixedCase
Pos: 21:1414
Variable name must be in mixedCase
Pos: 22:1420
Avoid making time-based decisions in your business logic
Pos: 70:1567
Avoid making time-based decisions in your business logic
Pos: 77:1568
Variable "amount" is unused
Pos: 58:1564

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

